个人简介
陈莉莉,女,博士,硕士生导师,现为suncitygroup太阳集团副教授。
E-mail:lily60612@126.com
学习经历
2005.09—2009.07,厦门大学,太阳集团,本科
2009.09—2014.06,南开大学,组合数学中心,硕博连读
工作经历
2014.07—2019.12,suncitygroup太阳集团,太阳集团,讲师
2020.01—至今,suncitygroup太阳集团,太阳集团,副教授
研究兴趣:
图论、图的染色问题
教学情况(含本科教学、研究生教学):
主讲本科课程有《离散数学》,《概率论与数理统计》,《线性代数》,《运筹学》
研究生课程《图染色引论》,《图论》;指导研究生3名,已毕业2名。
主持科研项目:
1.国家自然科学基金青年项目(11501223), 2016.01.01-2018.12.31.
2.福建省自然科学基金青年基金项目(2020J05058), 2020.11.01-2023.11.01.
3.suncitygroup太阳集团中青年教师科技创新资助计划(ZQN903), 2021.05.01-2025.04.30.
荣誉与获奖:
1. 2017年入选泉州市高层次人才“第五层次”
2. 2023年入选泉州市高层次人才“第四人次”
3. 2022年获得第十届suncitygroup太阳集团“精彩一堂课”理工组三等奖
4. 2022年suncitygroup太阳集团第三届教师教学创新大赛副高组三等奖
学术兼职:
担任美国数学学会《数学评论》(Mathematical Reviews)评论员
发表论文情况:
在Discrete Mathematics, Discrete Applied Mathematics, J. Combinatorial Optimization等SCI期刊上发表论文20余篇。部分论文如下:
[1] Lily Chen, Mingfang Huang, Gexin Yu, Xiangqian Zhou, The strong edge-coloring for
graphs with small edge weight, Discrete Mathematics, 2020, 343: 111779.
[2] Lily Chen, Runrun Liu, Gexin Yu, Ren Zhao, Xiangqian Zhou, DP-4-colorability of two
classes of planar graphs, Discrete Mathematics, 2019, 342: 2984-2993.
[3] Lily Chen, Kecai Deng, Gexin Yu, Xiangqian Zhou, Strong edge-coloring for planar gr
aphs with large girth, Discrete Mathematics, 2019, 342: 339-343.
[4] Lily Chen, Yingbin Ma, Yongtang Shi, Yan Zhao, On the [1,2]-domination number of ge
neralized Petersen graphs, Applied Mathematics and Computation, 2018, 327: 1-7.
[5] Lily Chen, Xueliang Li, Mengmeng Liu, Yaping Mao, A solution to a conjecture on the
generalized connectivity of graphs,Journal of Combinatorial Optimization,2017, 33: 27
5-282.
[6] Lily Chen, Bofeng Huo, Yingbin Ma, Hardness results for total rainbow connection of
graphs, Discussione Mathematicae Graph Theory, 2016, 36: 355-362.
[7] Lily Chen, Xueliang Li, Huishu Lian, Further hardness results on the rainbow verte
x-connection number of graphs, Theoretical Computer Science, 2013, 481:18-23.
[8] Lily Chen, Xueliang Li, Huishu Lian,Nordhaus-Gaddum-type theorem for rainbow connection number of graphs, Graphs and Combinatorics, 2013, 29:1235-1247.
[9] Lily Chen, Xueliang Li, Mengmeng Liu, Nordhaus-Gaddum-type theorem for the rainbow v ertex-connection number of a graph, Utilitas Mathematica, 2011, 86:335-340.
[10] Lily Chen, Xueliang Li, Yongtang Shi, The complexity of determining the rainbow ver
tex-connection of graphs, Theoretical Computer Science,2011,412:4531-4535.